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THE METRIC FIBRATIONS OF EUCLIDEAN SPACE

DETLEF GROMOLL & GERARD WALSCHAP

Abstract
The purpose of this note is to complete the classification of metric fibra-
tions in Euclidean space begun in [1]. Building on our techniques there, we
show that regardless of dimension, the fibers are always the orbits of a free
isometric group action by generalized glide rotations. A key ingredient of
the argument is the fact that in the global setting, these fibrations satisfy
a strong algebraic rigidity.

1. The fiber over a soul and the main result

We begin by recalling some general facts concerning metric fibrations
π : R

n+k → Mn that were established in [1]. Notationwise, X,Y, Z
will denote local horizontal fields, T,U, V vertical ones, and lower-case
letters refer to individual vectors. We write e = eh + ev ∈ H ⊕ V for
the decomposition of e ∈ TR

n+k into its horizontal and vertical parts.
Thus, the integrability tensor A and the second fundamental tensor S
are given by

AXY = 1
2 [X,Y ]v =

v
∇XY, SXU = −

v
∇UX.

M has nonnegative sectional curvature by O’Neill’s formula, and is
diffeomorphic to R

n since the fibers of the fibration are connected. In
particular, any soul of M consists of a single point. The fiber F over a
soul is a totally geodesic affine subspace of Euclidean space, and up to
congruence, F = R

k × 0 ⊂ R
k × R

n.
The normal bundle ν of F has two Riemannian connections relevant

to the present situation: One is the usual connection
h
∇, which is just
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the horizontal component of the Euclidean one. The other is the Bott

connection
B
∇ for which the basic fields along F are parallel sections of

ν. The connection difference form Ω =
h
∇−

B
∇ is then the 1-form on F

with values in the skew-symmetric endomorphism bundle of ν given by

Ω(U)X = −A∗
XU,

where A∗
X denotes the pointwise adjoint of AX . When X, Y are basic,

one always has

(1.1) d(AXY )�(U, V ) = 〈dΩ(U, V )X,Y 〉

for the 1-form (AXY )� metrically dual to AXY .
Our goal is to establish that Ω is Bott-closed, or equivalently, that

each integrability field AXY is parallel on F for basic X, Y . The fol-
lowing main result is then an immediate consequence of [1, Theorem
2.6]:

Theorem. Let π : R
n+k → Mn be a metric fibration of Euclidean

space with connected fibers. Then

1. The fiber F over a soul of M is an affine subspace of Euclidean
space, which, up to congruence, may be taken to be F = R

k × 0.

2. The connection difference form Ω along the normal bundle of F
induces a Lie algebra homomorphism Ω : R

k → so(n), and π is
the orbit fibration of the free isometric group action ψ of R

k on
R

n+k = R
k × R

n given by

ψ(v)(u, x) = (u+ v, φ(v)x), u, v ∈ R
k, x ∈ R

n,

where φ : R
k → SO(n) is the representation of R

k induced by Ω.

2. Polynomial growth of the holonomy form

The mean curvature form of the fibration is the horizontal 1-form
κ on R

n+k given by κ(E) = trSEh . By [1, Corollary 2.3], every metric
fibration of Euclidean space is taut ; i.e., κ is basic and exact. Let f
denote the function on R

n+k that vanishes on F and satisfies df = κ
(observe that f is constant along fibers since κ is basic), and set V =
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e−f . Define the holonomy form ω to be the k-form ω := V τ , where τ is
the vertical volume form of the fibers of π; i.e., τ is the k-form on R

n+k

whose metric dual at a point p is given by

τ �(p) = u1 ∧ · · · ∧ uk,

where u1, . . . , uk denotes any oriented orthonormal basis of the tangent
space to the fiber at p. It is well known that in general, the Lie derivative
of τ in horizontal directions X satisfies

(2.1) LXτ = −κ(X) τ

vertically. Now let E1, · · · , Ek be an oriented orthonormal basis of par-
allel vector fields on F , and extend them smoothly to all of R

n+k by
setting

Ui(a, y) := Ei(a, 0)−A∗
yEi(a, 0), (a, y) ∈ R

k × R
n.

More precisely, Ui(a, y) = ‖ [Ei(a, 0)−A∗
I(a,0)y

Ei(a, 0)], with ‖ denoting
parallel translation from (a, 0) to (a, y), and I(a,y) the canonical iso-
morphism of R

n+k with its tangent space at (a, y). In order to avoid
cumbersome notation, we shall from now on just assume these identifi-
cations. Observe that for horizontal lines γ originating at F , Ui ◦ γ is
the holonomy Jacobi field along γ which equals Ei at γ(0), see [1].

Lemma 2.2. ω� = U1 ∧ · · · ∧ Uk.

Proof. We must show that V = τ(U1, . . . , Uk). Both functions are
by definition constant equal to 1 on F . Next, observe that that if X is
the tangent field of a horizontal geodesic from F , then XV = −V κ(X),
whereas

X(τ(U1, . . . , Uk)) = LX(τ(U1, . . . , Uk)) = (LXτ)(U1, . . . , Uk)
= −τ(U1, . . . , Uk)κ(X)

by (2.1). Here we have used the fact that LXUi = 0. The lemma clearly
follows. q.e.d.

Lemma 2.3. The form U1∧· · ·∧Uk is polynomial of degree at most
k on every horizontal affine subspace.

Proof. Notice that the holonomy fields Ui are a priori linear only
along each affine subspace a × R

n orthogonal to F . It will later be-
come apparent that they are in fact global Killing fields generating the
isometric group action.
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Let p ∈ R
n+k, and q a point on the horizontal space H through p.

By Lemma 2.2, ∧iUi is holonomy invariant, so that

∧iUi(q) = ∧i[Ui(p)− (A∗
q−p + Sq−p)Ui(p)].

Thus, by translating the origin to p, it suffices to show that the map
x �→ ∧i(Ei −A∗

xEi − SxEi) is polynomial of degree at most k in x. But
this follows from the fact that x �→ A∗

xE+SxE is a linear map. q.e.d.

Lemma 2.4. For any (a, 0) and (0, x) in R
k × R

n, U1 ∧ · · · ∧ Uk is
polynomial in x on every affine line through (a, 0) in directions of the
image of Ax.

Proof. We show that if f is a component of ∧iUi, then all derivatives
of f of sufficiently high order vanish in directions Axy. The result then
follows from Taylor’s expansion. Notice that it is actually sufficient to
establish this for directions (Axy, y) (since the derivatives of order > k
in directions (0, y) vanish by Lemma 2.3). Using Lemma 2.3 once more,
it remains to show that both (a, 0) and (a+Axy, y) belong to a common
horizontal affine subspace. We claim, in fact, that they both belong to
the horizontal space through (a, x): Clearly, (a, 0) does; as to the other
point, just observe that (a+Axy, y)−(a, x) = (Axy, y−x) is orthogonal
to the vertical space at (a, x), since

〈(Axy, y − x), (u,−A∗
xu)〉 = 〈Axy, u〉 − 〈y − x,A∗

xu〉 = 0.

q.e.d.

3. Constancy of integrability fields

In this section, we use the polynomial behavior of the holonomy
form to deduce that each integrability field AXY is parallel along the
totally geodesic fiber F . Before getting into the details of the argument,
we provide a brief outline of the strategy involved, which relies on the
following splitting principle: The fiber F = R

k × 0 ⊂ R
k × R

n splits
isometrically as R

l × R
k−l with the kernel of A∗ tangent to the first

factor, and the image of A tangent to the second. This kernel extends
to the whole ambient space via parallel transport, and corresponds to
the translational part of the representation. In other words, the fibra-
tion R

n+k → Mn factors as an orthogonal projection R
n+k → R

n+k−l

followed by a fibration π′ : R
n+k−l → Mn which is weakly substantial

in the sense that the image of the A-tensor spans the whole fiber. π′
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thus measures the twisting or rotational part of the representation. The
splitting itself is in turn due to a kind of maximum principle: We es-
tablish that the polynomial holonomy form has bounded, and therefore
parallel derivative.

It will be necessary to first work with parallel horizontal fields along
F rather than basic (Bott parallel) ones, and we shall denote the former
by lowercase letters, reserving the uppercase notation for basic fields.
For a point p in the fiber F , let Ap = span{Up | U ∈ A}, where A
denotes the space of integrability fields spanned by all AXY along F .
The image of A is then the union of all Ap as p ranges over F . Notice
also that the kernel of A∗ consists of the union of all A⊥

p .
By the results in Section 2, the form ω� is polynomial along every

affine plane passing through a point (a, 0) ∈ F spanned by a horizontal
x and a vertical u in the image of A. The same is then true for the
derivative

∇xω
� = −

∑

i

E1 ∧ · · · ∧A∗
xEi ∧ · · · ∧Ek

of ω� in direction x. If A∗
xEi �= 0, then the corresponding wedge product

in the above expression is nonzero, since A∗
xEi is horizontal. But the El

are parallel along F , and A∗
xEi is bounded in norm, so that each A∗

xEi

must be parallel along the geodesic line t �→ γu(t) = (a + tu, 0). Thus,
for all x, y,

(3.1) (Axy ◦ γu)′ ≡ 0, u ∈ imA,

and the image of A, though a priori not of constant rank, is totally
geodesic along F , and thus consists of a disjoint union of affine sub-
spaces. The same is true of its orthogonal complement kerA∗: Given
u ∈ kerA∗, we claim that γ̇u(t) belongs to the kernel for all t. To see
this, consider the variation V (t, s) = expsu tx, which projects down to a
variation W = π ◦ V on the quotient. The Jacobi field Y (t) = W∗∂s|t,0
induced by W satisfies Y (0) = 0, and

Y ′(0) = π∗∇∂t(V∗∂s)h|(0,0) = −π∗
h
∇∂t(V∗∂s)v|(0,0) = π∗A∗

xu = 0.

Thus, Y is identically 0, or equivalently, the parallel field x is actually
basic along γu, so that A∗

xγ̇u = −(x ◦ γu)′ ≡ 0. This establishes the
claim.

Up to congruence, A0 is 0 × R
k−l for some integer l by (3.1). It

follows that for any (a, b) ∈ R
l × R

k−l = F , A⊥
(a,b) = kerA∗

(a,b) = R
l × b,
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since A⊥
(0,b) = R

l × b: Indeed, (a, b) ∈ A⊥
(0,b), so that A⊥

(0,b) ⊂ A⊥
(a,b), and

by symmetry, the reverse inclusion also holds. Thus, A(a,b) = a× R
k−l,

and F splits isometrically as R
l × R

k−l with the kernel of A∗ tangent
to the first factor and the image of A tangent to the second. But the
holonomy displacement of kerA∗ along horizontal lines γ that intersect
F is just parallel translation along γ, so that π factors as an orthogonal
projection

R
l × R

n+k−l → 0× R
n+k−l

followed by a Riemannian submersion π′ : R
n+k−l → Mn. Furthermore,

the latter is weakly substantial in that the totally geodesic fiber F ′ over
the soul of M is spanned by the image of A. (3.1) then implies that
each Axy is a parallel field along F ′, or equivalently, that the form Ω
is parallel, and therefore also closed. One concludes from (1.1) that for
basic X, Y , the integrability field AXY is a gradient, and having con-
stant norm, AXY is parallel. As pointed out earlier, the main theorem
now follows from [1, Theorem 2.6].
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