THE METRIC FIBRATIONS OF EUCLIDEAN SPACE

DETLEF GROMOLL \& GERARD WALSCHAP

Abstract

The purpose of this note is to complete the classification of metric fibrations in Euclidean space begun in [1]. Building on our techniques there, we show that regardless of dimension, the fibers are always the orbits of a free isometric group action by generalized glide rotations. A key ingredient of the argument is the fact that in the global setting, these fibrations satisfy a strong algebraic rigidity.

1. The fiber over a soul and the main result

We begin by recalling some general facts concerning metric fibrations $\pi: \mathbb{R}^{n+k} \rightarrow M^{n}$ that were established in [1]. Notationwise, X, Y, Z will denote local horizontal fields, T, U, V vertical ones, and lower-case letters refer to individual vectors. We write $e=e^{h}+e^{v} \in \mathcal{H} \oplus \mathcal{V}$ for the decomposition of $e \in T \mathbb{R}^{n+k}$ into its horizontal and vertical parts. Thus, the integrability tensor A and the second fundamental tensor S are given by

$$
A_{X} Y=\frac{1}{2}[X, Y]^{v}=\stackrel{v}{\nabla}_{X} Y, \quad S_{X} U=-\stackrel{v}{\nabla}_{U} X
$$

M has nonnegative sectional curvature by O'Neill's formula, and is diffeomorphic to \mathbb{R}^{n} since the fibers of the fibration are connected. In particular, any soul of M consists of a single point. The fiber F over a soul is a totally geodesic affine subspace of Euclidean space, and up to congruence, $F=\mathbb{R}^{k} \times 0 \subset \mathbb{R}^{k} \times \mathbb{R}^{n}$.

The normal bundle ν of F has two Riemannian connections relevant to the present situation: One is the usual connection $\stackrel{h}{\nabla}$, which is just

[^0]the horizontal component of the Euclidean one. The other is the Bott connection $\stackrel{B}{\nabla}$ for which the basic fields along F are parallel sections of ν. The connection difference form $\Omega=\stackrel{h}{\nabla}-\stackrel{B}{\nabla}$ is then the 1-form on F with values in the skew-symmetric endomorphism bundle of ν given by
$$
\Omega(U) X=-A_{X}^{*} U,
$$
where A_{X}^{*} denotes the pointwise adjoint of A_{X}. When X, Y are basic, one always has
\[

$$
\begin{equation*}
d\left(A_{X} Y\right)^{b}(U, V)=\langle d \Omega(U, V) X, Y\rangle \tag{1.1}
\end{equation*}
$$

\]

for the 1-form $\left(A_{X} Y\right)^{b}$ metrically dual to $A_{X} Y$.
Our goal is to establish that Ω is Bott-closed, or equivalently, that each integrability field $A_{X} Y$ is parallel on F for basic X, Y. The following main result is then an immediate consequence of $[1$, Theorem 2.6]:

Theorem. Let $\pi: \mathbb{R}^{n+k} \rightarrow M^{n}$ be a metric fibration of Euclidean space with connected fibers. Then

1. The fiber F over a soul of M is an affine subspace of Euclidean space, which, up to congruence, may be taken to be $F=\mathbb{R}^{k} \times 0$.
2. The connection difference form Ω along the normal bundle of F induces a Lie algebra homomorphism $\Omega: \mathbb{R}^{k} \rightarrow \mathfrak{s o}(n)$, and π is the orbit fibration of the free isometric group action ψ of \mathbb{R}^{k} on $\mathbb{R}^{n+k}=\mathbb{R}^{k} \times \mathbb{R}^{n}$ given by

$$
\psi(v)(u, x)=(u+v, \phi(v) x), \quad u, v \in \mathbb{R}^{k}, \quad x \in \mathbb{R}^{n}
$$

where $\phi: \mathbb{R}^{k} \rightarrow S O(n)$ is the representation of \mathbb{R}^{k} induced by Ω.

2. Polynomial growth of the holonomy form

The mean curvature form of the fibration is the horizontal 1-form κ on \mathbb{R}^{n+k} given by $\kappa(E)=\operatorname{tr} S_{E^{h}}$. By [1, Corollary 2.3], every metric fibration of Euclidean space is taut; i.e., κ is basic and exact. Let f denote the function on \mathbb{R}^{n+k} that vanishes on F and satisfies $d f=\kappa$ (observe that f is constant along fibers since κ is basic), and set $V=$
e^{-f}. Define the holonomy form ω to be the k -form $\omega:=V \tau$, where τ is the vertical volume form of the fibers of π; i.e., τ is the k-form on \mathbb{R}^{n+k} whose metric dual at a point p is given by

$$
\tau^{\sharp}(p)=u_{1} \wedge \cdots \wedge u_{k},
$$

where u_{1}, \ldots, u_{k} denotes any oriented orthonormal basis of the tangent space to the fiber at p. It is well known that in general, the Lie derivative of τ in horizontal directions X satisfies

$$
\begin{equation*}
L_{X} \tau=-\kappa(X) \tau \tag{2.1}
\end{equation*}
$$

vertically. Now let E_{1}, \cdots, E_{k} be an oriented orthonormal basis of parallel vector fields on F, and extend them smoothly to all of \mathbb{R}^{n+k} by setting

$$
U_{i}(a, y):=E_{i}(a, 0)-A_{y}^{*} E_{i}(a, 0), \quad(a, y) \in \mathbb{R}^{k} \times \mathbb{R}^{n}
$$

More precisely, $U_{i}(a, y)=\|\left[E_{i}(a, 0)-A_{\left.I_{(a, 0)}\right)}^{*} E_{i}(a, 0)\right]$, with $\|$ denoting parallel translation from $(a, 0)$ to (a, y), and $I_{(a, y)}$ the canonical isomorphism of \mathbb{R}^{n+k} with its tangent space at (a, y). In order to avoid cumbersome notation, we shall from now on just assume these identifications. Observe that for horizontal lines γ originating at $F, U_{i} \circ \gamma$ is the holonomy Jacobi field along γ which equals E_{i} at $\gamma(0)$, see [1].

Lemma 2.2. $\omega^{\sharp}=U_{1} \wedge \cdots \wedge U_{k}$.
Proof. We must show that $V=\tau\left(U_{1}, \ldots, U_{k}\right)$. Both functions are by definition constant equal to 1 on F. Next, observe that that if X is the tangent field of a horizontal geodesic from F, then $X V=-V \kappa(X)$, whereas

$$
\begin{aligned}
X\left(\tau\left(U_{1}, \ldots, U_{k}\right)\right) & =L_{X}\left(\tau\left(U_{1}, \ldots, U_{k}\right)\right)=\left(L_{X} \tau\right)\left(U_{1}, \ldots, U_{k}\right) \\
& =-\tau\left(U_{1}, \ldots, U_{k}\right) \kappa(X)
\end{aligned}
$$

by (2.1). Here we have used the fact that $L_{X} U_{i}=0$. The lemma clearly follows. q.e.d.

Lemma 2.3. The form $U_{1} \wedge \cdots \wedge U_{k}$ is polynomial of degree at most k on every horizontal affine subspace.

Proof. Notice that the holonomy fields U_{i} are a priori linear only along each affine subspace $a \times \mathbb{R}^{n}$ orthogonal to F. It will later become apparent that they are in fact global Killing fields generating the isometric group action.

Let $p \in \mathbb{R}^{n+k}$, and q a point on the horizontal space H through p. By Lemma 2.2, $\wedge_{i} U_{i}$ is holonomy invariant, so that

$$
\wedge_{i} U_{i}(q)=\wedge_{i}\left[U_{i}(p)-\left(A_{q-p}^{*}+S_{q-p}\right) U_{i}(p)\right] .
$$

Thus, by translating the origin to p, it suffices to show that the map $x \mapsto \wedge_{i}\left(E_{i}-A_{x}^{*} E_{i}-S_{x} E_{i}\right)$ is polynomial of degree at most k in x. But this follows from the fact that $x \mapsto A_{x}^{*} E+S_{x} E$ is a linear map. q.e.d.

Lemma 2.4. For any $(a, 0)$ and $(0, x)$ in $\mathbb{R}^{k} \times \mathbb{R}^{n}, U_{1} \wedge \cdots \wedge U_{k}$ is polynomial in x on every affine line through ($a, 0$) in directions of the image of A_{x}.

Proof. We show that if f is a component of $\wedge_{i} U_{i}$, then all derivatives of f of sufficiently high order vanish in directions $A_{x} y$. The result then follows from Taylor's expansion. Notice that it is actually sufficient to establish this for directions $\left(A_{x} y, y\right)$ (since the derivatives of order $>k$ in directions $(0, y)$ vanish by Lemma 2.3). Using Lemma 2.3 once more, it remains to show that both $(a, 0)$ and $\left(a+A_{x} y, y\right)$ belong to a common horizontal affine subspace. We claim, in fact, that they both belong to the horizontal space through (a, x) : Clearly, $(a, 0)$ does; as to the other point, just observe that $\left(a+A_{x} y, y\right)-(a, x)=\left(A_{x} y, y-x\right)$ is orthogonal to the vertical space at (a, x), since

$$
\left\langle\left(A_{x} y, y-x\right),\left(u,-A_{x}^{*} u\right)\right\rangle=\left\langle A_{x} y, u\right\rangle-\left\langle y-x, A_{x}^{*} u\right\rangle=0 .
$$

q.e.d.

3. Constancy of integrability fields

In this section, we use the polynomial behavior of the holonomy form to deduce that each integrability field $A_{X} Y$ is parallel along the totally geodesic fiber F. Before getting into the details of the argument, we provide a brief outline of the strategy involved, which relies on the following splitting principle: The fiber $F=\mathbb{R}^{k} \times 0 \subset \mathbb{R}^{k} \times \mathbb{R}^{n}$ splits isometrically as $\mathbb{R}^{l} \times \mathbb{R}^{k-l}$ with the kernel of A^{*} tangent to the first factor, and the image of A tangent to the second. This kernel extends to the whole ambient space via parallel transport, and corresponds to the translational part of the representation. In other words, the fibration $\mathbb{R}^{n+k} \rightarrow M^{n}$ factors as an orthogonal projection $\mathbb{R}^{n+k} \rightarrow \mathbb{R}^{n+k-l}$ followed by a fibration $\pi^{\prime}: \mathbb{R}^{n+k-l} \rightarrow M^{n}$ which is weakly substantial in the sense that the image of the A-tensor spans the whole fiber. π^{\prime}
thus measures the twisting or rotational part of the representation. The splitting itself is in turn due to a kind of maximum principle: We establish that the polynomial holonomy form has bounded, and therefore parallel derivative.

It will be necessary to first work with parallel horizontal fields along F rather than basic (Bott parallel) ones, and we shall denote the former by lowercase letters, reserving the uppercase notation for basic fields. For a point p in the fiber F, let $\mathcal{A}_{p}=\operatorname{span}\left\{U_{p} \mid U \in \mathcal{A}\right\}$, where \mathcal{A} denotes the space of integrability fields spanned by all $A_{X} Y$ along F. The image of A is then the union of all \mathcal{A}_{p} as p ranges over F. Notice also that the kernel of A^{*} consists of the union of all \mathcal{A}_{p}^{\perp}.

By the results in Section 2, the form ω^{\sharp} is polynomial along every affine plane passing through a point $(a, 0) \in F$ spanned by a horizontal x and a vertical u in the image of A. The same is then true for the derivative

$$
\nabla_{x} \omega^{\sharp}=-\sum_{i} E_{1} \wedge \cdots \wedge A_{x}^{*} E_{i} \wedge \cdots \wedge E_{k}
$$

of ω^{\sharp} in direction x. If $A_{x}^{*} E_{i} \neq 0$, then the corresponding wedge product in the above expression is nonzero, since $A_{x}^{*} E_{i}$ is horizontal. But the E_{l} are parallel along F, and $A_{x}^{*} E_{i}$ is bounded in norm, so that each $A_{x}^{*} E_{i}$ must be parallel along the geodesic line $t \mapsto \gamma_{u}(t)=(a+t u, 0)$. Thus, for all x, y,

$$
\begin{equation*}
\left(A_{x} y \circ \gamma_{u}\right)^{\prime} \equiv 0, \quad u \in \operatorname{im} A, \tag{3.1}
\end{equation*}
$$

and the image of A, though a priori not of constant rank, is totally geodesic along F, and thus consists of a disjoint union of affine subspaces. The same is true of its orthogonal complement ker A^{*} : Given $u \in \operatorname{ker} A^{*}$, we claim that $\dot{\gamma}_{u}(t)$ belongs to the kernel for all t. To see this, consider the variation $V(t, s)=\exp _{s u} t x$, which projects down to a variation $W=\pi \circ V$ on the quotient. The Jacobi field $Y(t)=\left.W_{*} \partial_{s}\right|_{t, 0}$ induced by W satisfies $Y(0)=0$, and

$$
Y^{\prime}(0)=\left.\pi_{*} \nabla_{\partial_{t}}\left(V_{*} \partial_{s}\right)^{h}\right|_{(0,0)}=-\left.\pi_{*}{\stackrel{h}{\partial_{t}}}\left(V_{*} \partial_{s}\right)^{v}\right|_{(0,0)}=\pi_{*} A_{x}^{*} u=0 .
$$

Thus, Y is identically 0 , or equivalently, the parallel field x is actually basic along γ_{u}, so that $A_{x}^{*} \dot{\gamma}_{u}=-\left(x \circ \gamma_{u}\right)^{\prime} \equiv 0$. This establishes the claim.

Up to congruence, \mathcal{A}_{0} is $0 \times \mathbb{R}^{k-l}$ for some integer l by (3.1). It follows that for any $(a, b) \in \mathbb{R}^{l} \times \mathbb{R}^{k-l}=F, \mathcal{A}_{(a, b)}^{\perp}=\operatorname{ker} A_{(a, b)}^{*}=\mathbb{R}^{l} \times b$,
since $\mathcal{A}_{(0, b)}^{\perp}=\mathbb{R}^{l} \times b$: Indeed, $(a, b) \in \mathcal{A}_{(0, b)}^{\perp}$, so that $\mathcal{A}_{(0, b)}^{\perp} \subset \mathcal{A}_{(a, b)}^{\perp}$, and by symmetry, the reverse inclusion also holds. Thus, $\mathcal{A}_{(a, b)}=a \times \mathbb{R}^{k-l}$, and F splits isometrically as $\mathbb{R}^{l} \times \mathbb{R}^{k-l}$ with the kernel of A^{*} tangent to the first factor and the image of A tangent to the second. But the holonomy displacement of $\operatorname{ker} A^{*}$ along horizontal lines γ that intersect F is just parallel translation along γ, so that π factors as an orthogonal projection

$$
\mathbb{R}^{l} \times \mathbb{R}^{n+k-l} \rightarrow 0 \times \mathbb{R}^{n+k-l}
$$

followed by a Riemannian submersion $\pi^{\prime}: \mathbb{R}^{n+k-l} \rightarrow M^{n}$. Furthermore, the latter is weakly substantial in that the totally geodesic fiber F^{\prime} over the soul of M is spanned by the image of A. (3.1) then implies that each $A_{x} y$ is a parallel field along F^{\prime}, or equivalently, that the form Ω is parallel, and therefore also closed. One concludes from (1.1) that for basic X, Y, the integrability field $A_{X} Y$ is a gradient, and having constant norm, $A_{X} Y$ is parallel. As pointed out earlier, the main theorem now follows from [1, Theorem 2.6].

References

[1] D. Gromoll \& G. Walschap, Metric fibrations in Euclidean space, Asian J. Math. 1 (1997) 716-728.

State University of New York
University of Oklahoma

[^0]: Received February 4, 2000. The first author was supported in part by the N.S.F., and the second by the O.U. Research Council.

